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BALANCED COALITION COUNTERSTRATEGIES IN MANY-PERSON DIFFERENTIAL GAMES* 

A.F. KLEIMENOV 

An m-person positional differential game whose dynamics are describedbyanonlinear 
differential equation is analyzed. The following information hierarchy is assumed 
to holds: each player knows the controls, realized at the current instant, of the 

players numbered higher than himself. The concept of a balanced coalition counter- 
strategy of the mplayers is introduced and an existence theorem is proved for it. 
A method for constructing the balanced coalition counterstrategy is indicated. The 
results are presented of a numerical example describing the planar motion of a 
material point under forces commanded by three players. The paper is closely refat- 
ed to the researches in /l-S/. 

1. We consider an m-person differential game whose dynamics are described by the non- 
linear differential equation 

2' = f (t, X, LLI,. . ., u,) 11.1) 

where 5 is an n-dimensional vector, ui is the i-th player's vector-valued control subject 

to the constraint ui SF';, Pi is a compactum in space R’Q. The function f is continuous in all 
the variables and satisfies a Lipschitz condition with respect to x in the domain GxP,x 

. . . Y pnz. Here G is a compactum in space (t, X) with a projection onto the t-axis equal to 
a prescribed interval [to, T];we assume that any trajectory of system (1.11, starting off in G, 
remains in Gup to the instant T. The i-th player's purpose is to choose the control Ui so 

as to minimize the quantity (~1 (x~TI)~ where Ui :R” t+ R’ are prescribed continuous functions, 

as system (1.1) goes from an arbitrary initial position (1,,s*)EG into a state z [T] at in- 

stant t = T. 
we denote M = (0, 1,. . ., m}. Let 1,~ [t,, r\. We say that a piecewise-constant right- 

continuous function a: It,, Tl ++ M is of class A, It,, 2'1 if it has at most one point of dis- 
continuity (subsequently denoted 6) and then only under the condition that a It,] = 0. Thus, 

the class A,[t,, T1 consists of functions a"[t] identically zero on It,, T], of functions adi [t], 
i = 1,. . . , m, t, c< 6< T equal to zero on [!*,fi) and to i on 16, T], and, finally, of functions 

a,'[11 which we identify with the functions a’ [tl. We assume that at the current instant t each 
of the mplayers knows the system's phase vector .~[tl as well as the value of some functions 
from class A,,, [t,,fil. In addition, the following information hierarchy exists in the system: 

a player numbered i (i = 1,. . ,, m) knows the controls realized at the current instant by the 
players numbered i $ l,...,m. 

Definition 1.1. A nlapping h, = /I, (t, I, up,. _, u,,E) defined for (t,x) EG, u2 E P,,. . ., 
%nE mr P E>O,&EM, such that 

h, (t, Z, "a,. . ., u,, E) = {up (t, z, uz,. . ., um, E), up (t, I, (1.2) 

us,. . ., &I, E),. * -1 d$, (t, 5, hl, e), u,(O) (t, r, E)} 
hi (t, z, u,,. * .I u,, E) = (IL” (t 1 u . 9 1 

Uil’, (tl t, Zfir. m my u,,e) 1!$(, x ,‘: . ” 
%lr E),. . . , 

7 I . . ., 
I&-, (t, 

urn, E),, . , , 
2, U,, E), u$ (i, 3l, E)}, i =I+“;,. . ,, m 

where 

$t") (t, 5, Ua,. . ., Urn, E), U,(“) (t, =, us,. . ,, U,, E),. . ., 2422, (t, 5, u,, E), IL,@) (t, 2, E), CCE hf 

are functions, Borel-measurable in the variables ulr..., u,, with valuesin P,, P2,..., Pm_,, P,,,, 
respectively, is called a coalition counterstrategy (c.c.s.) of the mplayers. Thus, for a 
fixed a the mapping k, associates with the collection (t,x, u2,..., umre) a collection of con- 
trols of form (1.2) of the m players; and, for a = 1.2,. . _, 
a does not occur the corresponding collection. 

m thecontroloftheplayer'numbered 

5, %_r. . .I &I, E). 
We denote the C.C.S. by the symbol jY+h,(t, 

A meaningful interpretation of the concept of a C.C.S. is given below. 
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Let there be given the c.c.s. H +- h, (t, X, u$,. .: II,. E), 
a partitioning A of interval [t*, 

scxnf initial positio:) (t.+, .r*) s (,. 
T] into a system 0f nonintersecting half-open intervals LT,, 

tj+l); the partitioning's step is denoted 

adi I.1 E A, It,, 
6 (A) = UlaXj (tj+l - tj). We assume that the functitm 

T] is realized the process. the point does notcoincide Eve:' 
one the nodes partitioning A,then is taken an additional in this 
ing. We the Euler line generated the c.c.s. II under partitioning A arid 
realization ae'].l thus; it is the absolutely continuous function 

ui*l~ll.fb~ It,1 = I*. satisfying the equation 
S*F I/I = .rhi It, t,, J'*, 1i.Q’. 

and the equation 

X*‘E IfJ = j (t, x*F It], I$) [t), , vy; [f], ui* It], v’t:‘,, . 1 &!I, L.?, 4 (1.4) 

for a.a. 'G ITjt 7j+l), i Z S + I.... 

(almost all) 
UB = Ug’(7j. X*e [Tj]. E), . , 

vi:‘, = ul:‘, (Zj, X&E [Tj], LQ,, . , ;j, e), 

co* W 
U-1 [tj=U- (T, X* [T.] U. 1-1 J’ E , > 

$* [t] = (0 ( j, 

r* (t] ; 
(1) 

> r+,, . . , d?, E), . . , 

UI 7 IA’ [Tj] L’;“ [t], . , Lf!; [t], Vi* [t], L’f$, , $, c) ’ , 

where ui*[t] is an arbitrary measurable functions chosen as the control by the i-th player; 

z+*[t]E Pi for a.a. tf=[f,, T]. We remark that to form the control ui* [t] the i -th player 
can utilize the information on the game's current position and on the controls chosen by the 

players numbered i + 1.. ., m. If the function a" [.I is realized during the game's progress, 

then the corresponding Euler polygonal line .T~E [I] = X~E It. t,, I..+, H, a01 satisfies the Eq.(1.3) 

on the whole interval It,, I']. The continuous function s[~]=s [t.t,,cr,.H,q+,‘] specified by an 

iterated limit for every unifomlly convergent double sequence of Euler polygonal lines 

z It]= lim Iim ~2, (t, flk, xik, H,ai,k, u$ [.I] (1.5) 
k-m I-m 

iimt,'=t*, lim.x,k=2*, lim6,k=@ 
I-m I-m I-m 
lim6(Alk)=0, lime,=0 
i-i0 *--?xz 

is called the motion generated by the C.C.S. H and by the corresponding realization a** 1.1. 
Such a definition of motion in an m-person differential game as the iterated limit of a 

double sequence of Euler polygonal lines is similar to the definition of motion for an anta- 

gonistic game, introduced in /2/. The set of motions L [t, t,, .z*. H, aa’] is denoted by X (t*, cc*. 
H, af). The motions .r [t, t,, x*. H, a’] and the set X (1,. x*, H, a”) are defined analogously. 

Definition 1.2. A C.C.S. HP-+-hh,p(t, .z:, uL.. ., u,, E) is said to be balanced if the in- 

equality 

is valid for any position (6,c)~G and for any number i c 1, 2, . . _, m . 
A meaningful interpretation of the definition given is as fOllOWS. Let all m players, 

when forming their own controls, arranqe to confine themselves to a collection of counter- 

strategies, prescribed by the mapping /z,,~(~,z. Us,. ..,u,,E) (see (1.2)). Sow coordinatingbody, 

located outside the system, monitors the implementation of the arrangement. We assume that at 

most one among the players can prove to be a violator of the arrangement. If all playershave 

observed the arrangement up to the current instant 1E[1,, T], then at the instant 2 

the coordinating body cummunicates to them the number zero (the value 11]t1 = 0) signifying that 

there were no violaters. However, if at the instant 6~.[t,, T) the i-th player violated the 

arrangement, then beginning with the instant 6 the violator's index i is conmiunicated to the 

players (the value crltl=i). By the same token, depending on whether or not there is a viola- 

tion of the arrangement during the game, the coordinating body communicates to the players 

either one of the functions ~~'l.1 or the function (IO [ .I. Then inequality (1.6) signifies 
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eat the violating player obtains for himself a result which, in general, is no better than 

mat which he could have guaranteed himself at the position (6.5) in which the system arrived 

at the instant of violation, if all players had adhered to the arrangement.Weremarkthatinthe 

given setting the i-t-h player-violator has the possibility when fomling the controls of 

utilizing the information on the controls of players numbered i + i,. . ., m. However, a problem 

setting also is possible when the player-violator is deprived either partially or completely 

of the infomlation on the other players' controls. 
We note the constructive nature of the definition of a balanced C.C.S.. To be Precise, 

for a balanced C.C.S. HP, for a fixed F>O and for any q>O we can find 6* (E,?)> 0, <(E, 

rl) > 0 such that for any position (ft,@~G and any i = 1,2,.. ., m the inequalities 

inf Gi(Xbe(T, 6*, E*, H”,cz\,, ui* [.I)) % :Jp, pi (~a’[ T, @**, I**, p,a”l) - 11 (1.7) 
XA’t.l 

are valid for Euler polygonal lines with partitioning step 6 (A)< 6*, for any admissible con- 

trols ui* [.I, while 

l6*-61<5, l6**--61<5, ifi*-61<5, 115*-51!<5, 115**-~511<61 @*E[e*,T). 

The validity of this statement follows from the definition of the motions generated by C-c-s. 

Theorem 1.1. In the m-person differential game being analyzed there exists a balanc- 

ed c.c.s. HP+haP(t,zz,uz,. . ., u,, E). 

2. The approach to be used for proving Theorem 1.1 was first applied for nonantagonistic 

differential games in the case of pure strategies (for system (1.1) with a separable right- 

hand side) in /3/ and was developed in /4/. In /5/ this approach was used to prove the exist- 

ence theorem for a balanced coalition mixed strategy. Later on we require certain results 

from the theory of antagonistic differential games /1,2/. Consider an antagonisticgamewhose 

dynamics are described by Eq.(l.l); the first player's role is played by the i-thplayerwhose 

problem is to minimize a quantity ui (x IT]), while the second player's role is played by a 

coalition of the other m - 1 players whose goal is the opposite. The first player, in foml- 

ing his own control, uses the counterstrategy Ui +IL~ (t,s. u Ifi' . I> IL,,,, F), while the second 

player uses a collection of counterstrategies and pure strategies 

vi +{(ul (t, Z, Ui, F),. . ., Ui_l (k 5, Ui, E), Ui+l (t, Z? E),. . .q urn (t, 5, E)}. 

It can be verified that such classes of player behavior are consistent, which enables us to 

combine the problems of the first and second players into one differential game /l/. It can 

be shown that this differential game (we denote it ri) has a value and a universalsaddlepoint 

/2/. The proofs of the existence theorems for the differential game's value are based on 

well-known constructions /l/ and rely essentially on the fact of the presence of a saddle 
point in the small game in corresponding player behavior classes. 

For the game ri the condition for the presence of a saddle point in the small game is 

min max 
U,(.) UI(')....,Yi_l(.),UI+I,...,Um 

I'g(t, z, u (.)) = 

max minl'g(t,z,u(.)), YlER" 
U'(.).....Ui_,(.).Ui+1'...,U, Ui(.) 

g (t* 5, u (.)) = g (t. x, u1 (.),. . ., U&l (.), ui (-), u,+x, . . .) 
Urn) = f (L z, 4 (Ui),. . ., %,I (Ui), ut (U‘,I,. . ., 4, 

u. ,+I’ . .1 %J 

(2.1) 

where the minimum is computed over the functions ui (U,,,?. . ., u,) and the maximum over the 
functions u1 (ui),. . ., u,_~ (ui) and the vectors uitl, . ., u,. We omit the verification of condi- 
tion (2.1)'s fulfillment. We just note that this condition is consistent with the definitions 
of stable sets and of strategies extremal to them, given in Sect.3. We denote the value of 
game ri by yi(t,,s,) and the pair of strategies forming the universal saddle point by 

UI’~~PIO(~,I,U~+~,...~I(~~~E)~ Vtoj{Z1~~(t,5,Ui,E),...,UI1)1,0(f,~,Ui,E),11!~~,0(f,~,E),...,U~~((t,5,E)) (2.2) 

By the definition of the universal saddle point we have 

rzlyef (ZIT, t*,+,lJia7v*1)<eal (r[T, &,.r*,Ui',V101)= Yi(t,, I*) -< min oi(s[T,t,,s,,ui,v,"]) (2.3) 
XC.1 

for any position (t,,s,)EG and any UI and v,. 

Proof. Consider the following C.C.S. H* +hh,* (t.x.u,,..., u,. E): 

ho” (t, 5, uz, . . . , U,, E) = (UIO (t, I, t(zr . I +,,v E)v. . > urn-l.‘) (t, I, u,, F), U,o (t, I, F)) 

hi* (t, 2, UP, . . , u,, E)=(ulb’(t,r,ui,e),....Ul’l)l,,(t,s,ui,E),U!:)1,~((t..T,E) ,..., u$(f,t,s)}, i=l,. . , m 

(2.4) 
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where all the functions comprising the collection in (2.4) nave been defined ii, I:,:',, ~~~ 
US show that the C.C.S. H* is balanced. 
i = 1. 2,. .( 

Indeed, for any position (6, E)c(: and any number 
m, on the strength of (2.2), (2.3) and of the definition of motions we have 

:(f: oi (I IT, 19~5, H*, as:]) = :;!I (pi (I [i”. 6,5, Vi”]) = 

Ui (L IT7 6, Ev Uj”, Vi”]) = y, (6. j) 3 InaX CTi (5 [T, 6, E, Ui”, l/i*],= 
XI.1 

y; ui (x [T, 6,E, H*, a’]) 

which proves the balance of the C.C.S. H*. A balanced C.C.S. has the following property 
which we state as a theorem. 

Theorem 2.1. If a C.C.S. N-+llo.(t,~, u,... ., u,, E) is balanced, then for any initial 
position (t*, z*)EG the inequalities 

I'i (t? 2 ftl) > oi (z ITI). i = 1, 2,. ., m, t E II”, Tl (2.5) 

are fulfilled for any motion t [.I EX (t*, I*, H, a”). 
The theorem’s proof is based on the fact that if an equality opposite to (2.5) is fulfil- 

led for some i, some 7 E It,, T] and SOme motion I* l.1~ X(t,,z,,H, cp), then the i -th player, 
adhereing to the strategy Iii" of (2.2), guarantees himself a result better than 0, (z* [?"I), 
which contradicts the balance of C.C.S. H. 

3. As follows from Sect.2, the C.C.S. H* is determined on the basis of universal saddle 
points in the games ri, which can be detemlined by different methods (see /2/). Below we 
examine a method of constructing the universal saddle points which uses constructions close 

to those applied (*) for the case of pure strategies (see /5/ as well). Supposethatthevalue 

functions 11, (t. .r) are known for each of the games rj (i = I,. _, m) . Under the assumptions 
made these functions are continuous in G. We fix E> 0 and we consider level surfaces of 

the form I'~ (1, z) = ke, lc is an integer. We denote 

iv:, = {(t, 5) E-G : yi (t, 1) G/E) (3.1) 

Z$== {(t,z) EG:~, (t,s)>k~} 

.sk = w” \, Il.:;;‘, IE .e r& z zfc\P; 

The sections of the sets introduced, by the hyperplane t=T, are denoted W,,k (T), Z,,' (z),etc. 

The family of nonintersecting sets Sek(R,Ek) forms a partitioning of set G. which is finite 
by virtue of the continuity of yi (t% x). The sets W,Ek are ui*-stable, while the sets Z,,k 

are u,* -stable, in the sense of the following definitions which are analogs of the defini- 

tions of u,-stable and t,,-stable sets given in /l/. 

A set Win the space {t, .z) is said to be u,*-stable if for any countercontrols u,(uC), 

. . ui_l (ui) and for constant vectors uifIr. _, u,, position (t,,s,) E u' and number 1" E (t*, T) 

there exists a motion s(t)which is a solution of the contingency equation 

2' (t) E CO If : f = (t, X, ZLL (Ui),- .? Ui_* (Ui)v Uir Ui+l,. .7 nln), Ui E Pil 

and satisfies the condition (t*,s(L*))~ W. A set Win the space {t> r) is said to be Vi*- 

stable if for any countercontrol Ui (zQ+~ , . . ..u..,), position (t,,r,) E W and number l*"(t*, TI 

there exists a motion z(t) which is a solution of the COntingenCY equation 

5' (t) E CO If 1 f = f (ta x7 UIr. . ., ui_1, ui (Ui+l> . .3 Urn), 
Ui+l 1 . , .3 Urn), Uj E Pj, i = 1, 2,. ., m, j # il 

and satisfies the condition (t*, s(t*))E w. 
in game ri we define in the way following the first player's counterstrategy Ui'-+-~;~(t, 

x, ujt1r . .1 hn, E) extremal to the family of sets {WIEk}. With thelt_:iple (L,J)LE~,C>~ we as- 

sociate an integer li such that (t,2)E Sk. If here the set FV,h (t) is nonempty, then in it 

we find a point wiV) (t,r, C) closest (one of the closest in the case of nonuniqueness) in the 

*) Kononenko A-F., Mathematical analysis methods for dynamic systems with a nierarciCalsYsten1 

of controls. Dissertation atthe competition for the academic degree of Doctor Of PhYsico- 

Mathematical Sciences. MOSCOW: Computing Center of the Academy of Sciences of the USSR, 1979. 
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Euclidean metric to point z. Denoting s&O = 5 - w,('). (t. I, E), we find uie (t, z, I$+~. . . . . u,, E) 

from the condition 

min max si"f(t,z,ul,..., U,_ir Ui* Ui+ll . 1 Urn) = 

5 u,....,q__l 

max El” f (t, 5, al. . . , u,-l. u{(t, 5,11,+1, , U,, E), U,+I, . . * Urn) 
“1,...,U,-1 

(3.2) 

If, however, Wi, Q-l (t) = 0, then as uie (t, I, Ui+l,. . ., urn, E) we can choose any vector Ui E Pi. 

Further, in game ri we define a collection of counterstrategies and pure strategies of the 

second player, extremal to the family of sets IZ,,"} 

VI' + (~'1" (t,s, Z&E), . . , U:!;(t, X, Ui, E), lL:$ (t,X,E), . , &” (t,x,E)} 

With the $',rple (t, z)EG, E> 0 we associate an integer iii such that (t. .z)~z &. If here 

the set &: (t) is nonempty, then in it we find a point rai(*)(t,s,~) closesFJe(one of the clos- 

est) to point x. Denoting s$a) = x _ a~$*) (t, 5, E), we find u:'$ (t, 5, E).. ., hh (t, 5, E), as well 
as U?’ (t, 5, Ui, E),. . , zL?Y (t, 5, ut, E) , respectively from the conditions 

(3.31 

(3.4) 

If, however, Z$"'Q) = 2, then we can choose any vectors u1 E P,,. ., LL~_~ E P,_,, uiLi e l'i+,.. . 1 

urn CzPrn. We note that from conditions (3.2) and (3.4) the functions ui2 (C 2, U,+:r . . ., 4,,? El 
and uyJe (t, I, ZQ,E), . .., U!!!; (t* t9 ui9 E) can be chosen as Borel-measurable relative to u~+~ , . . ., ZI, 
and to ui. 

The first player's extremal counterstrategy II,' and the second player's collection of 

extremal counterstrategies and pure strategies I'i' constructed in this manner exactly form 

the universal saddle point in game Ti. 

4. As an example we consider a system described by the differential equation 

(4.1) 

The scalars ai and the vectors F(') are controls at the disposal of three players: the first 

player chooses al and Q, the second chooses U, and PC', , and the third chooses f@) and F@), 

i.e. 

The constraints on the controls are 

,,F(')IP=(Ti:))l_t(I.:i))l$l. )CQI$fl, u<p<+ (4.2) 

The initial conditions q(0)=nO, q'(O)=?" and the game termination instant Tare specified. 

Player i strives to minimize the quantity 

or (q (T)) = 11 q (T) -- a(” I (4.3) 

where =(') are certain fixed points in the plane (q,.~). Equation (4.1) can be interpreted as 
the equation of motion of a material point of unit mass in plane (ql,~~) under the action of 
a force formed by the three players. The third player selects two control-forces p2' and F@'. 
The second player, knowing the selection of control F@l,turns it by an angle uI (it is agreed 
that a positive angle corresponds to a counterclockwise turn) and, in addition, selects a 

control-force F(l). The first player, knowing the other players' selections, chooses the 
angles a, and a, by which he turns the controls F(I) and F"'. The i-the player's goal is to 
take the material point as close as possible to the point a(') at the instant L= T. 

Setting y, =q,,yl = q1,y3 = rlt',y+= q,'in system (4.1) and making the changes of variables =I = 

Y1+(T-1)y,,z,=I,+(T--')Yr,rs=Y3'=+=YC' we obtain a system whose first two equations are 
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where I, and /, are the projections of the vector on the right-hand side of Eq.(4.1) onto thtr 
axes of 'I, and 'II . Further we examine the truncated system (4.4) with the indices 

To construct .the C.C.S. H* it is necessary to construct the collections ho* and 
The components of these collections are (we omit the arguments for brevity) 

h,* of (2.4). 

(4.6) 

I-y, + rri3anij, .-r-3<<oij[<~ 

Here oil= Oij(Z) (i, i= 1,2,3) is the angle between the vectors F"' and - A('). - II < Oij (2) < II, 

and O,j > 0 if the shortest rotation of vector F(j) up to coincidence with vector -p@) takes 
place counterclockwise. 

The numerical experiment was performed on a computer. The following numerical values of 

the problem's parameters were chosen: 

Tz2.2; p=n/3, 

The Fig.1 shows the Euler polygonal lines generated bythec.c.s. 

H* for a uniform partitioning step 6 (A) = 0.01. The solid line 

shows the Euler polygonal line in the game without vilations. 

The dashed line I shows the Euler polygonal line in a game where 

the violator is the first player and the violation instant is 

6=i.2; the digit z marks the polygonal line in a game where 

the violator is the second player and 6=0.9; the digit 3 marks 

the Euler polygonal line in a game where the violator is the 

third player and 6 = 0.6. Here the violators choose control 

methods which were the best under the counteractions of the 
Fig.1 other players. We see that the violators essentially increase 

the distances from their own target points, as compared with 

those they have in the violation-free game. We remark that in the Fig.1 we have shown only 

individual Euler polygonal lines from the appropriate sheaves. 

The author thanks A.I. Subbotin for attention to the work and for discussing the results, 

as well as V.L. Turova for assistance with the numerical experiment. 
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